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Figure S1. (a-b) Simulated results of typical radial distribution of |ETM|2 for an anisotropic NLC 
(radial) microcavity with principal diameter=20 μm and eigenwavelength≈550 nm for radial mode 
numbers (a) s=1 and (b) s=2. The vertical dashed line represents the interface between the cavity 
and the external environment. The evanescent field is described by the red curve. (c-d) Simulated 
WGM hot spot distribution in the 𝑟𝑟 − 𝜑𝜑 plane (left panel) and 𝑟𝑟 − 𝜃𝜃 plane (right panel) with the 
same parameter corresponding to (a) and (b), respectively. The edge of the cavity is shown by a 
black curve.   
 
 
 
 



 
 

 

 

Figure S2. (a) Schematic diagram illustrating the composition of the emission signal and the 
corresponding region upon free space excitation and collection. Only very little proportion of the 
donor-acceptor molecules at the cavity interface can contribute to the WGM emission. (b) A 
simulated WGM distribution in the radial direction assisting the comprehension in (a).  
 
 
 
 
 
 



 

 

Figure S3. Normalized excitation and emission spectra of Coumarin 6 (C6): donor, Rhodamine 
6G (R6G): mediator, and Rhodamine B (RhB): acceptor.  
 
 
 
 
 
 



 

 

Figure S4. The simulated density of the excited states of the acceptor with 0.1 mM donor (black 
curve) and without donor (blue curve) as a function of pumping time. The excitation wavelength 
is 460 nm in the presence of the donor, and 550 nm in the absence of the donor. The x-axis takes 
the logarithm to facilitate the observation. 
 
 
 
 
 
 
 
 



 

 

Figure S5. WGM spectra and photonic barcodes of Coumarin 6 microdroplet with a diameter (a) 
8.97 μm, (b) 11.77 μm or (c) 13.66 μm before (green curve) and after (pink curve) adding 5 μM 
Rhodamine solution. The insets present the fluorescence images captured by a monochromatic 
CCD (pseudocolor). All scale bars, 10 µm. All spectra were measured under the same excitation 
wavelength: 430-490 nm. The fluorescence background was subtracted for clarity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Figure S6. (a) Optical simulation of the intensity of resonant modes (the dots) under different 
cavity size (3 μm ~ 15 μm). The acceptor concentration was fixed as a constant. The y-axis takes 
the logarithm to facilitate the observation. (b-c) Comparison of WGM modulated fluorescence 
emission spectra of Coumarin 6 (50 μM) donor-droplet between (b) small size and (c) large size 
after adding low concentration of Rhodamine molecules (250 nM). All spectra were measured 
under the same excitation wavelength and power density. The fluorescence background was 
subtracted for clarity. 

 
 
 
 
 



 

 

 

Figure S7. Optical simulation of the intensity of resonant modes (the dots) under  different 
acceptor concentration (0 μM ~ 10 μM). The cavity size was fixed as a constant (D=20µm). 
 
 
 



 

Figure S8. Absorption cross-sections of three fluorescent dyes Coumarin 6 (C6), Rhodamine 6G 
(R6G), and Rhodamine B (RhB).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Description of Barcode Complexity Calculation 
As illustrated in Table S1, by ignoring the higher-order modes in both Figures 2a and 2b, the 

number of remaining fundamental resonant modes (wavelengths) are 40 (with the donor) and 31 

(without donor), respectively. Considering that the intensity of each mode is defined by 10 (2) 

states (0.1, 0.2, 0.3, 0.4…1.0 or 0, 1), then there are respectively 1040 (240) and 1031 (231) 

combinations for the spectra in Figures 2a and 2b (which is far above trillions). Hence, the barcode 

will be additional 109 (29) times “more” complex after introducing the donor to the cavity (1040 

/1031 or 240 /231). This is how we calculated the case in our paper. However, the number of spectral 

resonant modes will vary by changing the droplet size and fluorophores (concentrations and 

bandwidth). 
 
 
 

Table S1. Barcode Complexity Calculation 

 

 Number of 

fundamental 

modes 

The complexity with 10 

states (0.1-1) 

The complexity with 2 

states (0 and 1) 

In presence of the donor 

(Fig. 2a) 

40 1040 240 

In absence of the donor 

(Fig. 2b) 

31 1031 231 

Difference 9 109 29 

 

 
 
 
 
 
 



 
Eigenmode Calculation  

In our experiment, the orientation of the liquid crystal molecule is radial, which means the 

rod-like molecule is perpendicular to the surface of the microdroplet. Typically, nematic liquid 

crystal (5CB) has high birefringence with ordinary refractive index (RI) 𝑛𝑛𝑜𝑜=1.54 (perpendicular 

to the long axis of NLC molecule) and extraordinary refractive index 𝑛𝑛𝑒𝑒=1.72 (parallel to the 

long axis of NLC molecule). Taking into account the refractive index of the aqueous ambient 

(𝑛𝑛𝑠𝑠 = 𝑛𝑛𝐻𝐻2𝑂𝑂 = 1.33), the transverse electric (TE) mode suffers a smaller RI (1.54/1.33≈1.16) than 

transverse magnetic (TM) mode (1.72/1.33≈1.29), which means TE modes sense more radiation 

loss. Moreover, the contribution of the material absorption loss to the quality factor is given by 

𝑄𝑄𝑚𝑚𝑎𝑎𝑡𝑡 = 2𝜋𝜋𝜋𝜋
𝛼𝛼𝛼𝛼

, indicating that TE mode experience more material absorption loss. In summary, only 

TM mode but not TE mode can be supported by the NLC microdroplet.  

For dielectrically anisotropic sphere (long axis in radial orientation), we have the 

characteristic equation as follows11: 

𝑇𝑇𝑇𝑇: 
𝑛𝑛𝑜𝑜
𝑛𝑛𝑠𝑠
�𝜅𝜅𝑙𝑙,𝑠𝑠𝑅𝑅𝑗𝑗𝑙𝑙�𝜅𝜅𝑙𝑙,𝑠𝑠𝑅𝑅��

′

𝜅𝜅𝑙𝑙,𝑠𝑠𝑅𝑅𝑗𝑗𝑙𝑙�𝜅𝜅𝑙𝑙,𝑠𝑠𝑅𝑅�
=
�𝜅̃𝜅𝑙𝑙,𝑠𝑠𝑅𝑅ℎ𝑙𝑙

(1)�𝜅̃𝜅𝑙𝑙,𝑠𝑠𝑅𝑅��
′

𝜅̃𝜅𝑙𝑙,𝑠𝑠𝑅𝑅ℎ𝑙𝑙
(1)�𝜅̃𝜅𝑙𝑙,𝑠𝑠𝑅𝑅�

           (𝑆𝑆1) 

𝑇𝑇𝑇𝑇:
𝑛𝑛𝑠𝑠
𝑛𝑛𝑜𝑜
�𝜅𝜅𝑙𝑙,𝑠𝑠𝑅𝑅𝑗𝑗𝑙𝑙�𝜅𝜅𝑙𝑙,𝑠𝑠𝑅𝑅��

′

𝜅𝜅𝑙𝑙,𝑠𝑠𝑅𝑅𝑗𝑗𝑙𝑙�𝜅𝜅𝑙𝑙,𝑠𝑠𝑅𝑅�
=
�𝜅̃𝜅𝑙𝑙,𝑠𝑠𝑅𝑅ℎ𝑙𝑙

(1)�𝜅̃𝜅𝑙𝑙,𝑠𝑠𝑅𝑅��
′

𝜅̃𝜅𝑙𝑙,𝑠𝑠𝑅𝑅ℎ𝑙𝑙
(1)�𝜅̃𝜅𝑙𝑙,𝑠𝑠𝑅𝑅�

           (𝑆𝑆2) 

where, 𝜅𝜅𝑙𝑙,𝑠𝑠 = 𝑛𝑛𝑜𝑜𝜔𝜔𝑙𝑙,𝑠𝑠 𝑐𝑐⁄ , 𝜅̃𝜅𝑙𝑙,𝑠𝑠 = 𝑛𝑛𝑠𝑠𝜔𝜔𝑙𝑙,𝑠𝑠 𝑐𝑐⁄ , and c is the speed of light in vacuum, 𝜔𝜔𝑙𝑙,𝑠𝑠 = 2𝜋𝜋𝑓𝑓𝑙𝑙,𝑠𝑠 is 

the eigenfrequency with polar mode number l and radial mode number s . 𝑗𝑗𝑙𝑙  and ℎ𝑙𝑙
(1)  are 

spherical Bessel function of the first kind and spherical Hankle function of the first kind, 

respectively. R is the radius of the sphere. 𝑙𝑙 = 𝑙𝑙(𝑙𝑙) = 1
2
�−1 + �1 + 4(𝑛𝑛𝑜𝑜 𝑛𝑛𝑒𝑒⁄ )2𝑙𝑙(𝑙𝑙 + 1)� is a 

non-integer order. 

Subsequently, we fitted the resonance peak as TM modes by anisotropic characteristic 

equation (eq. S2), including polar mode number l and radial mode number s, and the result is 

reasonable. 

 



 
Electric Field Calculation  

When the information (l, s, ω) of the eigenmodes were obtained by solving eq. S1-S2, 

electric (magnetic) field can be calculated from the general description of field amplitude (for 

simplicity, we only presented equations for TM modes)42: 

𝐸𝐸𝑟𝑟𝑇𝑇𝑇𝑇(𝑟𝑟,𝜃𝜃,𝜑𝜑) =

⎩
⎪
⎨

⎪
⎧𝑙𝑙�𝑙𝑙 + 1�
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𝜅𝜅𝑙𝑙,𝑠𝑠𝑟𝑟
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𝑛𝑛𝑜𝑜
𝑛𝑛𝑠𝑠

𝑗𝑗𝑙𝑙�𝜅𝜅𝑙𝑙,𝑠𝑠𝑅𝑅�

ℎ𝑙𝑙
(1)�𝜅̃𝜅𝑙𝑙,𝑠𝑠𝑅𝑅�
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(1)�𝜅̃𝜅𝑙𝑙,𝑠𝑠𝑟𝑟�
𝜅̃𝜅𝑙𝑙,𝑠𝑠𝑟𝑟

𝑌𝑌𝑙𝑙𝑚𝑚(𝜃𝜃,𝜑𝜑),    𝑟𝑟 > 𝑅𝑅
 (𝑆𝑆3) 

𝐸𝐸𝜃𝜃𝑇𝑇𝑇𝑇(𝑟𝑟,𝜃𝜃,𝜑𝜑) =

⎩
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⎨

⎪
⎧�𝜅𝜅𝑙𝑙,𝑠𝑠𝑟𝑟𝑗𝑗𝑙𝑙�𝜅𝜅𝑙𝑙,𝑠𝑠𝑟𝑟��′
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𝜕𝜕𝜕𝜕
,                                       𝑟𝑟 < 𝑅𝑅

𝑛𝑛𝑠𝑠
𝑛𝑛𝑜𝑜

�𝜅𝜅𝑙𝑙,𝑠𝑠𝑅𝑅𝑗𝑗𝑙𝑙�𝜅𝜅𝑙𝑙,𝑠𝑠𝑅𝑅��′
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𝜕𝜕𝜕𝜕

,    𝑟𝑟 > 𝑅𝑅
(𝑆𝑆4) 

𝐸𝐸𝜙𝜙𝑇𝑇𝑇𝑇(𝑟𝑟,𝜃𝜃,𝜑𝜑) =
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𝑛𝑛𝑠𝑠
𝑛𝑛𝑜𝑜
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𝑌𝑌𝑙𝑙𝑚𝑚(𝜃𝜃,𝜑𝜑),    𝑟𝑟 > 𝑅𝑅
(𝑆𝑆5) 

 

where 𝐸𝐸𝑟𝑟𝑇𝑇𝑇𝑇 , 𝐸𝐸𝜃𝜃𝑇𝑇𝑇𝑇  and 𝐸𝐸𝜙𝜙𝑇𝑇𝑇𝑇  represent components of electric field in spherical coordinates, 

(𝑟𝑟,𝜃𝜃,𝜑𝜑) is position vector in spherical coordinates, 𝑌𝑌𝑙𝑙𝑚𝑚 is spherical harmonics function, 𝑚𝑚 is 

azimuthal mode number. 

As shown in Fig. S1, distribution of electric field (|𝐸𝐸𝑇𝑇𝑇𝑇|2 = 𝐸𝐸𝑟𝑟𝑇𝑇𝑇𝑇
2 + 𝐸𝐸𝜃𝜃𝑇𝑇𝑇𝑇

2 + 𝐸𝐸𝜙𝜙𝑇𝑇𝑇𝑇
2 ) 

along the radial direction was calculated by setting 𝜃𝜃 = 𝜋𝜋 2⁄  and 𝜑𝜑 = 0. The discontinuous at 

the interface is attributed to the boundary condition of EM field.  

 

 

 

 

 



 

 

Theoretical Calculation of Cavity Spontaneous Emission Rate in a Microcavity 

 

Compared to pulsed laser, continuous-wave (CW) light sources possess a much greater width than 

the fluorescence lifetime (~ns) and its’ energy density is much lower than the pulsed laser. As such, 

gain medium has little chance to achieve population inversion, which means spontaneous emission 

dominates rather than stimulated emission and thereby the stimulated emission term was neglected. 

According to Fermi’s golden rule, the rate of photon emission can be written as eq. S636, 37: 

𝛤𝛤𝑒𝑒𝑒𝑒 =
2𝜋𝜋
ℏ
� |〈𝑓𝑓|𝐻𝐻|𝑖𝑖〉|2𝜌𝜌(𝜔𝜔)𝐿𝐿(𝜔𝜔)
∞

0
𝑑𝑑𝑑𝑑                 (𝑆𝑆6) 

where 𝜌𝜌(𝜔𝜔) is the density of states per unit of angular frequency ω, 𝐿𝐿(𝜔𝜔) is the emission line 

shape, |〈𝑓𝑓|𝐻𝐻|𝑖𝑖〉|2 represents the strength of the coupling between initial and final states. 

In a vacuum, the density of states is homogeneous so that the rate of photon emission is exactly 

equal to radiative emission rate of dyes: 

𝜅𝜅𝑟𝑟𝑟𝑟𝑟𝑟 = 𝛤𝛤𝑒𝑒𝑒𝑒,𝑣𝑣𝑣𝑣𝑣𝑣 =
2𝜋𝜋
ℏ
� |〈𝑓𝑓|𝐻𝐻|𝑖𝑖〉|2𝜌𝜌𝑣𝑣𝑣𝑣𝑣𝑣𝐿𝐿(𝜔𝜔)
∞

0
𝑑𝑑𝑑𝑑

=
2𝜋𝜋
ℏ

|〈𝑓𝑓|𝐻𝐻|𝑖𝑖〉|2𝜌𝜌𝑣𝑣𝑣𝑣𝑣𝑣                  (𝑆𝑆7) 

In the presence of the cavity, the density of states at the resonant modes is supposed to be enhanced 

by Purcell factor: 

𝐹𝐹𝑝𝑝(𝜔𝜔) =
𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔)
𝜌𝜌𝑣𝑣𝑣𝑣𝑣𝑣

         (𝑆𝑆8) 

Considering eq. S6-8, we derived the photon emission rate in the microcavity as follows: 

             𝛤𝛤𝑒𝑒𝑒𝑒,𝑐𝑐𝑐𝑐𝑐𝑐 =
2𝜋𝜋
ℏ
� |〈𝑓𝑓|𝐻𝐻|𝑖𝑖〉|2𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔)𝐿𝐿(𝜔𝜔)
∞

0
𝑑𝑑𝑑𝑑 

=
2𝜋𝜋
ℏ
� |〈𝑓𝑓|𝐻𝐻|𝑖𝑖〉|2𝐹𝐹𝑝𝑝(𝜔𝜔)𝜌𝜌𝑣𝑣𝑣𝑣𝑣𝑣𝐿𝐿(𝜔𝜔)
∞

0
𝑑𝑑𝑑𝑑 

=  𝜅𝜅𝑟𝑟𝑟𝑟𝑟𝑟 � 𝐹𝐹𝑝𝑝(𝜔𝜔)𝐿𝐿(𝜔𝜔)
∞

0
𝑑𝑑𝑑𝑑               (𝑆𝑆9) 

 

 



 

 

 

 

FRET rate 

 Förster resonant energy transfer is a near-field electrodynamic phenomenon that has been 

explained by both classical physics and quantum physics. The FRET rate can be written as43: 

                𝜅𝜅𝐹𝐹 =
1
𝜏𝜏𝐷𝐷
�
𝑅𝑅0
𝑟𝑟 �

6

            (𝑆𝑆10) 

where 𝜏𝜏𝐷𝐷 is the intrinsic fluorescence lifetime of the donor, 𝑟𝑟 is the distance between donor and 

acceptor molecule, 𝑅𝑅0 is the Förster distance given by43: 

𝑅𝑅0 = �
9 ln(10)𝜅𝜅2𝜙𝜙𝐷𝐷
128𝜋𝜋5𝑁𝑁𝐴𝐴𝑛𝑛𝑠𝑠4

� 𝐹𝐹𝐷𝐷(𝜆𝜆)𝜖𝜖𝐴𝐴(𝜆𝜆)𝜆𝜆4𝑑𝑑𝑑𝑑
∞

0

6
                (𝑆𝑆11) 

Here, 𝜙𝜙𝐷𝐷 is the quantum yield of the donor, 𝜅𝜅2 is the orientation factor and usually assumed to 

be 2/3, 𝑁𝑁𝐴𝐴  is the Avogadro's number, 𝑛𝑛𝑠𝑠  is the refractive index of the surrounding medium, 

𝐹𝐹𝐷𝐷(𝜆𝜆)  and 𝜖𝜖𝐴𝐴(𝜆𝜆)  represent the area-normalized donor emission intensity and extinction 

coefficient of the acceptor (M-1cm-1), respectively.  

We selected Coumarin 6 as donor and Rhodamine 6G as acceptor, and the calculated 

Förster distance is 6.08 nm in water and 5.51 nm in liquid crystal. Inside the microcavity, the 

average distance between donor molecules can be estimated by 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 = 1 �𝑁𝑁𝐴𝐴𝐶𝐶
3⁄  and the D-A 

distance 𝑟𝑟 at the interface is supposed to be less than 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎.  

 

 

 

 

 

 



 

 

Table S2. Simulation parameters 

Symbols Description Numeric value 

𝑛𝑛𝑜𝑜 The ordinary refractive index of 5CB 1.54 

𝑛𝑛𝑒𝑒 The extraordinary refractive index of 5CB 1.72 

𝑛𝑛𝑠𝑠 The refractive index of the aqueous ambient 1.33 

σ𝑎𝑎𝑎𝑎𝑎𝑎,𝐷𝐷 Absorption cross-section of donor See Fig. S8 

σ𝑎𝑎𝑎𝑎𝑎𝑎,𝐴𝐴 Absorption cross-section of acceptor See Fig. S8 

𝐿𝐿𝐷𝐷 Emission probability of donor See Fig. S3 

𝐿𝐿𝐴𝐴 Emission probability of acceptor See Fig. S3 

𝐼𝐼𝑝𝑝ℎ The power density of the pump 1.33 mW/cm2 

𝑐𝑐 Speed of light in vacuum 30 cm/ns 

ℎ Plank constant 6.626e-34 J•s 

𝑁𝑁𝐴𝐴 Avogadro constant  6.022e23 mol-1 

𝜏𝜏𝐷𝐷 Donor intrinsic fluorescence lifetime C6: 2.5 ns 

𝜏𝜏𝐴𝐴 Acceptor intrinsic fluorescence lifetime R6G: 4.08 ns RhB: 1.68 ns  

𝜙𝜙𝐷𝐷 Donor quantum yield 0.78 

𝜙𝜙𝐴𝐴 Acceptor quantum yield R6G: 0.95 RhB: 0.65 

𝜅𝜅2 orientation factor  2/3 

 


